

Spec No. :DS70-2012-0059
Effective Date: 06/23/2017
Revision: B

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Photocouplers
 LTV-3150 series

1.0 Amp Output Current IGBT Gate Drive Optocoupler with Rail-to-Rail Output Voltage, High CMR.

1. DESCRIPTION

The LTV-3150 optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 1.0A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 50 \mathrm{~A}$. For IGBTs with higher ratings, the LTV- 3150 series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.

1.1 Features

- 1.0 A maximum peak output current
- Rail-to-rail output voltage
- 200 ns maximum propagation delay
- 100 ns maximum propagation delay difference
- $35 \mathrm{kV} / \mathrm{us}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{CC}}=3.0 \mathrm{~mA}$ maximum supply current
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 5000 Vmms $_{\text {R }} 1 \mathrm{~min}$
- IEC/EN/DIN EN 60747-5-5 V Iorm $=630$ Vpeak
1.2 Applications
- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- $\mathrm{AC} /$ Brushless $D C$ motor drives

A $0.1 \mu \mathrm{~F}$ bypass Capacitor must be connected between Pin 5 and 8.

Truth Table

LED	Vac-GND (Turn-ON, +ve going)	Vac-GND (Turn-OFF, -ve going)	V_{0}
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	Low
ON	$0-11.0 \mathrm{~V}$	$0-9.5 \mathrm{~V}$	Low
ON	$11.0-13.5 \mathrm{~V}$	$9.5-12 \mathrm{~V}$	Transition
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	High

2. PACKAGE DIMENSIONS

2.1 LTV-3150

2.2 LTV-3150M

2.3 LTV-3150S

Notes:

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark (Y : Thailand).
Dimensions are in Millimeters and (Inches).

3. TAPING DIMENSIONS

3.1 LTV-3150S-TA

3.2 LTV-3150S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$16 \pm 0.3(0.63)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$7.5 \pm 0.1(0.295)$
	P_{2}	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$12 \pm 0.1(0.47)$

3.3 Quantities Per Reel

Package Type	TA TA1
Quantities (pcs)	1000

Photocouplers
 LTV-3150 series

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	-
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+105	${ }^{\circ} \mathrm{C}$	-
Output IC Junction Temperature	T_{J}	-	125	${ }^{\circ} \mathrm{C}$	-
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	-
Average Forward Input Current	$\mathrm{I}_{\text {F }}$	-	25	mA	-
Reverse Input Voltage	$V_{\text {R }}$	-	5	V	-
Peak Transient Input Current	$\mathrm{IF}_{\text {(TRAN })}$	-	1.0	A	1
"High" Peak Output Current	ІОН(РЕАК)	-	1.0	A	2
"Low" Peak Output Current	lol(PEAK)	-	1.0	A	2
Input Current (Rise/Fall Time)	$\mathrm{tr}_{(\mathrm{I})} / \mathrm{tf}_{(1 \mathrm{~N})}$	-	500	ns	3
Output Voltage	$\mathrm{V}_{\text {(PEAK }}$	-	V_{CC}	V	-
Power Dissipation	P_{1}	-	45	mW	-
Output IC Power Dissipation	Po	-	250	mW	-
Total Power Dissipation	$\mathrm{P}_{\text {T }}$	-	295	mW	-
Lead Solder Temperature	$\mathrm{T}_{\text {sol }}$	-	260	${ }^{\circ} \mathrm{C}$	-

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: Note: A ceramic capacitor ($0.1 \mu \mathrm{~F}$) should be connected between pin 8 and pin 5 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.
Note 1: Pulse width (PW) $\leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$
Note 3: The rise and fall times of the input on-current should be less than 500 ns

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	15	30	V
Input Current (ON)	$\mathrm{I}_{\mathrm{FL}(O N)}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.0	0.8	V

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	-
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	-	-1.237	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	-
	Input Reverse Voltage	$B V_{\text {R }}$	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	-	-
	Input Threshold Current (Low to High)	$I_{\text {FLH }}$	-	1.9	5	mA	$\mathrm{V} \mathrm{O}>5 \mathrm{~V}, \mathrm{l}_{0}=0 \mathrm{~A}$	$\begin{gathered} 6, \\ 7,18 \end{gathered}$	-
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8	-	-	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=0 \mathrm{~A}$	-	-
	Input Capacitance	$\mathrm{Clin}^{\text {a }}$	-	33	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	-	-
Output	High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$	-	1.9	3.0	mA	Output Open, $I_{F}=7 \text { to } 16 \mathrm{~mA}$	4, 5	-
	Low Level Supply Current	$\mathrm{I}_{\text {ccl }}$	-	2.0	3.0	mA	Output Open, $V_{F}=-3 \text { to }+0.8 \mathrm{~V}$		-
			-	-	-0.3	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	16	1
			-	-	-0.8		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}\right)$		2
			0.3	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\right)$	17	1
			0.8	-	-		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+3 \mathrm{~V}\right)$		2
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.6 \end{gathered}$	$\begin{aligned} & V_{\mathrm{CC}} \\ & 0.35 \end{aligned}$	-	V	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \\ & I_{O}=-100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1,2, \\ 14 \end{gathered}$	-
	Low level output voltage	VoL	-	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+}+ \\ 0.25 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.4 \end{gathered}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	3, 15	-
	UVLO Threshold	V ${ }_{\text {uvLO+ }}$	11.0	12.5	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	-
		Vuvio.	9.5	10.9	12.0	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		-
	UVLO Hysteresis	UVLO ${ }_{\text {Hys }}$	-	1.6	-	V			-

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15$ to 30 V , unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Propagation Delay Time to High Output Level	tplh	50	120	200	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=47 \Omega, \\ & \mathrm{C}_{g}=3 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{gathered} 8,9,10 \\ 11,12 \\ 20 \end{gathered}$	-	
Propagation Delay Time to Low Output Level	$t_{\text {PHL }}$	50	110	200				-	
Pulse Width Distortion	PWD	-	15	70				-	
Propagation delay difference between any two parts or channels	PDD	-100	-	100				3	
Output Rise Time (20 to 80\%)	Tr	-	35	-			20	-	
Output Fall Time (80 to 20\%)	Tf	-	35	-				-	
UVLO turn on delay	Tuvlo on	-	1.6	-	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V} \end{aligned}$		-	
UVLO turn off delay	TuvLo off	-	0.4	-		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V} \end{aligned}$		-	
Common mode transient immunity at high level output	\|CMH		35	50	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	21	1
Common mode transient immunity at low level output	\|CML		35	50	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15$ to 30 V , unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: CM_{H} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$).
Note 2: CM_{L} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{O}}<1 \mathrm{~V}$).
Note 3: The difference between tphL and tpLh between any two parts series parts under same test conditions.
6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Note
Withstand Insulation Test Voltage	$\mathrm{V}_{\text {ISO }}$	5000	-	-	V	$\mathrm{RH} \leq 40-60 \%$, $\mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,	1,2
Input-Output Resistance	$\mathrm{R}_{-\mathrm{O}}$	-	10^{12}	-	Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V} \mathrm{DC}$	1
Input-Output Capacitance	$\mathrm{C}_{-\mathrm{O}}$	-	0.90	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Device is considered a two terminal device: pins 1, 2 and 3 are shorted together and pins 4, 5 and 6 are shorted together.
Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage $6000 \mathrm{~V}_{\text {RMS }}$ for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

7. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 1: High output rail voltage vs. Temperature

Figure 3: Vol vs. Temperature

Figure 5: Icc vs. Vcc

Figure 2: V_{OH} vs. Temperature

Figure 4: Icc vs. Temperature

Figure 6: IFLH hysteresis

LITEON: ${ }^{\circ}$ \square OPTOELECTRONICS

Figure 7: $I_{\text {FLH }}$ vs. Temperature

Figure 9: Propagation delays vs. I_{F}

Figure 11: Propagation delays vs. Rg_{g}

Figure 8: Propagation delays vs. V_{Cc}

Figure 10: Propagation delays vs. Temperature

Figure 12: Propagation delays vs. C_{g}

LITECONI ${ }^{\circ}$

Figure 13: Input current vs. Forward voltage

Figure 14 : Vон Test Circuit

Figure 16 : Іон Test Circuit

Figure 15 : Vol Test Circuit

Figure 17 : Iol Test Circuit

Figure 18 : IFLH Test Circuit
Figure 19 : UVLO Test Circuit

Figure 20 : tr, tt, tpLh and tphl Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\text {smin }}$) - Temperature Max ($\mathrm{T}_{\mathrm{smax}}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 100 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} /$ sec max.
Ramp-down rate	$3 \sim 6{ }^{\circ} \mathrm{C} / \mathrm{sec}$

8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec
Preheat temperature:25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

9. NAMING RULE

Part number Options
LTV-3150
LTV-3150M
LTV-3150S
LTV-3150S-TA
LTV-3150S-TA1
LTV3150-V
LTV3150M-V
LTV3150S-V
LTV3150STA-V
LTV3150STA1-V

Definition of Suffix	Remark
"3150"	LiteOn model name
"No Suffix"	Dual-in-Line package clearance distance 9 mm typical
"M"	Wide lead spacing package clearance distance 9 mm min.
"S"	Surface mounting package clearance distance 8 mm min.
"TA"	Pin 1 location at lower right of the tape
"TA1"	Pin 1 location at upper left of the tape
"V"	VDE approved option

10. Notes

Specifications of the products displayed herein are subject to change without notice.
The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

